Limits not existing

In the next two questions we look at examples of functions that do not have a limit at a point.

1. Recall the unproved result from lectures that if you can find two sequences
$\left\{x_{n}\right\}_{n \geq 1}, x_{n} \neq a$ for all $n \geq 1, \lim _{n \rightarrow \infty} x_{n}=a$ and
$\left\{y_{n}\right\}_{n \geq 1}, y_{n} \neq a$ for all $n \geq 1, \lim _{n \rightarrow \infty} y_{n}=a$
for which $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(y_{n}\right)$ then $\lim _{x \rightarrow a} f(x)$ does not exist.

Use this to prove that
i) For $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{1}(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

the limit $\lim _{x \rightarrow 0} f_{1}(x)$ does not exist.
Hint find a sequence $x_{n} \rightarrow 0$ for which $f_{1}\left(x_{n}\right)=1$ for all $n \geq 1$ and a sequence $y_{n} \rightarrow 0$ with $f_{1}\left(y_{n}\right)=0$ for all $n \geq 1$.
ii) For $f_{2}: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ defined by

$$
f_{2}(x)=\sin \left(\frac{\pi}{x}\right)
$$

the limit $\lim _{x \rightarrow 0} f_{2}(x)$ does not exist.
Hint find a sequence $x_{n} \rightarrow 0$ for which $\sin \left(\pi / x_{n}\right)=1$ for all $n \geq 1$ and a sequence $y_{n} \rightarrow 0$ with $\sin \left(\pi / y_{n}\right)=-1$ for all $n \geq 1$.

Solution i) First we need a sequence of non-zero rational numbers tending to 0 . Let

$$
x_{n}=\frac{1}{n}
$$

for all $n \geq 1$. Then $\lim _{n \rightarrow \infty} x_{n}=0$. Since each x_{n} is rational we have $f_{1}\left(x_{n}\right)=1$ for all $n \geq 1$ in which case $\lim _{n \rightarrow \infty} f_{1}\left(x_{n}\right)=1$.

Next we need a sequence of non-zero irrational numbers tending to 0 . Let

$$
y_{n}=\frac{\sqrt{2}}{n}
$$

for all $n \geq 1$. Then $\lim _{n \rightarrow \infty} y_{n}=0$. This time each y_{n} is irrational so $f_{1}\left(y_{n}\right)=0$ for all $n \geq 1$ in which case $\lim _{n \rightarrow \infty} f_{1}\left(y_{n}\right)=0$.

By the result quoted in the question we deduce that $\lim _{x \rightarrow 0} f_{1}(x)$ does not exist.
ii) We know that

$$
\sin \left(2 \pi n+\frac{\pi}{2}\right)=1
$$

for all integers n, so choose x_{n} such that

$$
\frac{\pi}{x_{n}}=2 \pi n+\frac{\pi}{2}, \quad \text { i.e. } \quad x_{n}=\frac{2}{4 n+1} .
$$

for all $n \geq 1$. Then $\lim _{n \rightarrow \infty} x_{n}=0$ while $f_{2}\left(x_{n}\right)=1$ for all $n \geq 1$ so $\lim _{n \rightarrow \infty} f_{2}\left(x_{n}\right)=1$.

We also know that

$$
\sin \left(2 \pi n+\frac{3 \pi}{2}\right)=-1
$$

for all integers n, so choose y_{n} such that

$$
\frac{\pi}{y_{n}}=2 \pi n+\frac{3 \pi}{2}, \quad \text { i.e. } \quad y_{n}=\frac{2}{4 n+3}
$$

for all $n \geq 1$. Then $\lim _{n \rightarrow \infty} y_{n}=0$ while $f_{2}\left(y_{n}\right)=-1$ for all $n \geq 1$ so $\lim _{n \rightarrow \infty} f_{2}\left(y_{n}\right)=-1$.

Thus again by the result quoted in the question we deduce that $\lim _{x \rightarrow 0} f_{2}(x)$ does not exist.
2. i) Show by means of an example that $\lim _{x \rightarrow a}\{f(x)+g(x)\}$ may exist even though neither $\lim _{x \rightarrow a} f(x)$ or $\lim _{x \rightarrow a} g(x)$ exist.
ii) Do the same for $\lim _{x \rightarrow a} f(x) g(x)$.

Hint: Construct f and g from a function in the previous question or a similar one seen in the notes.

Solution The hint suggests using a function that fails to have a limit at a point. From the notes we have that $h(x)=x /|x| x \neq 0$, with $a=0$, is such a function. (Recall, the left hand limit does not equal the right hand limit at 0).
i) For example, with $a=0$, try

$$
f(x)=\frac{x}{|x|} \quad \text { and } \quad g(x)=-\frac{x}{|x|}
$$

for $x \neq 0$.
ii) For example, with $a=0$, try

$$
f(x)=\frac{x}{|x|} \quad \text { and } \quad g(x)=\frac{x}{|x|}
$$

for $x \neq 0$. In this case

$$
\lim _{x \rightarrow 0} f(x) g(x)=\lim _{x \rightarrow 0} \frac{x^{2}}{|x|^{2}}=\lim _{x \rightarrow 0} 1=1
$$

exists.

One-sided limits

In the next two questions we examine a limit at a point by examining the two one-sided limits at that point.
3. Let

$$
F(x)=\frac{x^{2}-1}{|x-1|}
$$

i) For what x is this well-defined?

Hint Recall that $|y|=y$ if $y \geq 0$ and $=-y$ if $y<0$.
ii) Find $\lim _{x \rightarrow 1^{+}} F(x)$
iii) Find $\lim _{x \rightarrow 1^{-}} F(x)$.
iv) Does $\lim _{x \rightarrow 1} F(x)$ exist?
v) Sketch the graph of $F(x), x \in \mathbb{R}$.

Solution i) $F(x)$ is well-defined for $x \neq 1$.
ii) If $x>1$ then $x-1>0$ and so $|x-1|=x-1$ and thus

$$
F(x)=\frac{x^{2}-1}{x-1}=x+1 .
$$

Hence $\lim _{x \rightarrow 1+} F(x)=2$.
iii) If $x<1$ then $x-1<0$ and so $|x-1|=-(x-1)$ and thus

$$
F(x)=\frac{x^{2}-1}{-(x-1)}=-(x+1)
$$

Hence $\lim _{x \rightarrow 1-} F(x)=-2$.
iv) The one-sided limits are not equal and thus $\lim _{x \rightarrow 1} F(x)$ does not exist.
v) The graph of F :

4. Sketch the graph of

$$
f(x)= \begin{cases}8-x^{2}, & x<2 \\ 3, & x=2 \\ x^{2}-2 & x>2\end{cases}
$$

Use the $\varepsilon-\delta$ definition to evaluate the following one-sided limits.
i) $\lim _{x \rightarrow 2-} f(x) \quad$ and
ii) $\lim _{x \rightarrow 2+} f(x)$.

Does $\lim _{x \rightarrow 2} f(x)$ exist?
Solution The graph of f is

i) Left hand limit: From the graph we might guess that $\lim _{x \rightarrow 2-} f(x)=$ 4.

For $x<2$ we have

$$
\begin{equation*}
|f(x)-4|=\left|\left(8-x^{2}\right)-4\right|=\left|4-x^{2}\right|=|x-2||x+2| . \tag{1}
\end{equation*}
$$

Let $\varepsilon>0$ be given, choose $\delta=\min (1, \varepsilon / 4)$ and assume $2-\delta<x<2$.
The bound $\delta \leq 1$ means that $1<x<2$, and so $3<x+2<4$. Thus $|x+2|<4$ and (1) becomes $|f(x)-4|<4|x-2|$.

The other bound $\delta \leq \varepsilon / 4$ then means that

$$
|f(x)-4|<4|x-2|<4 \delta \leq 4\left(\frac{\varepsilon}{4}\right)=\varepsilon .
$$

Thus we have verified the $\varepsilon-\delta$ definition of the one-sided $\operatorname{limit}^{\lim } \lim _{x \rightarrow 2-} f(x)=$ 4.
ii) Right hand limit: From the graph we might guess that $\lim _{x \rightarrow 2+} f(x)=$ 2.

For $x>2$ we have $f(x)=x^{2}-2$ and so

$$
\begin{equation*}
|f(x)-2|=\left|x^{2}-4\right|=|x-2||x+2| . \tag{2}
\end{equation*}
$$

Let $\varepsilon>0$ be given, choose $\delta=\min (1, \varepsilon / 5)$ and assume $2<x<2+\delta$.
The bound $\delta \leq 1$ means that $2<x<3$, and so $4<x+2<5$. Thus $|x+2|<5$ and (2) becomes $|f(x)-4|<5|x-2|$.

The other bound, $\delta \leq \varepsilon / 5$, means that

$$
|f(x)-2|<5|x-2|<5 \delta \leq 5\left(\frac{\varepsilon}{5}\right)=\varepsilon
$$

Thus we have verified the $\varepsilon-\delta$ definition of the one-sided $\operatorname{limit} \lim _{x \rightarrow 2+} f(x)=$ 2.

Since the one-sided limits do not agree we conclude that $\lim _{x \rightarrow 2} f(x)$ does not exist.

Limits at Infinity

In the next five questions we look at limits as $x \rightarrow+\infty$ and $x \rightarrow-\infty$.
5. Verify the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{3 x+3}{x-2}=3
$$

Solution Rough work Consider

$$
|f(x)-L|=\left|\frac{3 x+3}{x-2}-3\right|=\frac{9}{|x-2|} .
$$

If $x>2$ then $|x-2|=x-2$ and we demand that

$$
\frac{9}{x-2}<\varepsilon, \quad \text { i.e. } \quad x>2+\frac{9}{\varepsilon} .
$$

If x satisfies this then necessarily $x>2$ as required for the previous step. End of Rough work

Proof Let $\varepsilon>0$ be given, choose $X=2+9 / \varepsilon$ and assume $x>X$. For such x we have

$$
\begin{aligned}
|f(x)-L| & =\left|\frac{3 x+3}{x-2}-3\right|=\frac{9}{|x-2|} \\
& =\frac{9}{x-2} \quad \text { since } x>X>2 \\
& <\frac{9}{X-2} \quad \text { since } x>X \\
& =\frac{9}{(9 / \varepsilon)} \quad \text { since } X-2=9 / \varepsilon \\
& =\varepsilon .
\end{aligned}
$$

Therefore we have verified the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{3 x+3}{x-2}=3
$$

6. Verify the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow-\infty} \frac{2 x-2}{x+2}=2
$$

Solution Rough Work. Consider

$$
|f(x)-L|=\left|\frac{2 x-2}{x+2}-2\right|=\frac{6}{|x+2|}
$$

In the definition of limit as $x \rightarrow-\infty$ we need to find a negative X. First demand that $x<-2$ so $x+2<0$ and $|x+2|=-(x+2)$. Then

$$
\left|\frac{2 x-2}{x+2}-2\right|=-\frac{6}{x+2} .
$$

Next demand this is $<\varepsilon$, that is

$$
-\frac{6}{x+2}<\varepsilon .
$$

This can rearranged as $x<-2-6 / \varepsilon$. If x satisfies this then necessarily $x<-2$ as previously demanded. textitEnd of Rough work.

Proof Let $\varepsilon>0$ be given. Choose $X=-2-6 / \varepsilon$. Assume $x<X$. First $x<X<-2$ means $x+2$ is negative so $|x+2|=-(x+2)$ and thus

$$
|f(x)-L|=\left|\frac{2 x-2}{x+2}-2\right|=\frac{6}{|x+2|}=-\frac{6}{(x+2)}
$$

But $x<X=-2-6 / \varepsilon$ implies $-(x+2)>6 / \varepsilon$, i.e.

$$
-\frac{6}{(x+2)}<\varepsilon
$$

Hence $|f(x)-L|<\varepsilon$ and we have verified the definition of

$$
\lim _{x \rightarrow-\infty} \frac{2 x-2}{x+2}=2
$$

7. Find the value of

$$
\lim _{x \rightarrow+\infty} \frac{2-x^{2}}{x^{2}+2}
$$

and show your value satisfies the $\varepsilon-X$ definition.
Solution Rough work For large x, whatever it's sign,

$$
\frac{2-x^{2}}{x^{2}+2} \quad \text { 'looks like' } \quad \frac{-x^{2}}{x^{2}}=-1
$$

So we guess the limit is -1 . Consider

$$
|f(x)-L|=\left|\frac{2-x^{2}}{x^{2}+2}-(-1)\right|=\frac{4}{\left|x^{2}+2\right|}=\frac{4}{x^{2}+2} .
$$

You could demand this is $<\varepsilon$ i.e.

$$
x>\left(-2+\frac{4}{\varepsilon}\right)^{1 / 2}
$$

But this requires $-2+4 / \varepsilon>0$, i.e. $\varepsilon<2$ and we don't usually restrict ε. Instead, bound $|f(x)-L|$ from above by a 'simpler' function and then demand the bound is $<\varepsilon$. For example,

$$
\frac{4}{x^{2}+2}<\frac{4}{x^{2}}
$$

so demand $4 / x^{2} \leq \varepsilon$. And if you don't like square roots of ε, require $x>1$ which implies $x^{2}>x$ and thus $4 / x^{2} \leq 4 / x$. We need only then demand $4 / x<\varepsilon$.

End of Rough work
Proof Let $\varepsilon>0$ be given, choose $X=\max (1,4 / \varepsilon)$ and assume $x>X$. For such x we have

$$
\begin{aligned}
|f(x)-L| & =\frac{4}{x^{2}+2}<\frac{4}{x^{2}}<\frac{4}{x} \quad \text { since } x>X \geq 1 \\
& \leq \frac{4}{(4 / \varepsilon)} \quad \text { since } x>X \geq 4 / \varepsilon \\
& =\varepsilon
\end{aligned}
$$

Therefore we have verified the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{2-x^{2}}{x^{2}+2}=-1
$$

8. Find the value of

$$
\lim _{x \rightarrow-\infty} \frac{3 x+3}{x-2}
$$

and show your value satisfies the $\varepsilon-X$ definition.
Solution Rough Work For large x, whatever it's sign,

$$
\frac{3 x+3}{x-2} \quad \text { 'looks like' } \quad \frac{3 x}{x}=3
$$

So we guess the limit is -1 . Consider

$$
|f(x)-L|=\left|\frac{3 x+3}{x-2}-3\right|=\frac{9}{|x-2|}
$$

In the definition of limit as $x \rightarrow-\infty$ we need to find a negative X. If $x<X<0$ then $x-2<0$ so $|x-2|=-(x-2)$. We need then demand that

$$
\frac{9}{2-x}<\varepsilon .
$$

End of Rough Work
Proof Let $\varepsilon>0$ be given, choose $X=\min (0,2-9 / \varepsilon)$ and assume $x<X$. For such x we have

$$
\begin{aligned}
|f(x)-L| & =\frac{9}{|x-2|}=\frac{9}{2-x} \text { since } x<X \leq 0 \\
& \leq \varepsilon \text { since } x<X \leq 2-9 / \varepsilon
\end{aligned}
$$

Therefore we have verified the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow-\infty} \frac{3 x+3}{x-2}=3
$$

Note $x-2<0$ will follow from $x<2$ which, in turn, follows from $x<2-9 / \varepsilon$. Thus you might be tempted to choose $X=2-9 / \varepsilon$. Yet, as mentioned in the rough work we look for negative X and $2-9 / \varepsilon<0$ only if $\varepsilon<9 / 2$. As stated before we don't restrict ε, hence our choice of $X=\min (0,2-9 / \varepsilon)$. End of Note

Extra questions for practice

9. Verify the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{-2-x^{2}}{x^{2}-2}=-1
$$

Solution Rough work Consider

$$
|f(x)-L|=\frac{4}{\left|x^{2}-2\right|}
$$

If we assume $x^{2}>2$ then $|f(x)-L|=4 /\left(x^{2}-2\right)$ and we need demand this is $<\varepsilon$. This rearranges as $x>\sqrt{2+4 / \varepsilon}$. If this holds then the previous requirement $x>\sqrt{2}$ necessarily holds.

End of Rough work.
Proof Let $\varepsilon>0$ be given, choose $X=\sqrt{2+4 / \varepsilon}$ and assume $x>X$. For such x we have

$$
\begin{aligned}
|f(x)-L| & =\frac{4}{\left|x^{2}-2\right|}=\frac{4}{x^{2}-2} \quad \text { since } x>X \geq \sqrt{2} \\
& <\frac{4}{X^{2}-2} \quad \text { since } x>X \\
& =\varepsilon
\end{aligned}
$$

by the definition of X. Therefore we have verified the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow+\infty} \frac{-2-x^{2}}{x^{2}+2}=-1
$$

Note it is not so easy to use the method of the previous question, and bound $|f(x)-L|$ from above by a simpler function. For example it is not true to say

$$
\frac{4}{x^{2}-2} \leq \frac{4}{x^{2}}
$$

It is, though, true that

$$
\frac{4}{x^{2}-2} \leq \frac{5}{x^{2}}
$$

for $x^{2} \geq 10$, or, if you don't like square roots, $x \geq 4$. I have chosen 5 on the right hand side only since it is the smallest integer strictly larger than 4 . If $x \geq 4$ then $5 / x^{2}<5 / 4 x$ and we need demand this is $<\varepsilon$.

Alternative proof Let $\varepsilon>0$ be given, choose $X=\max (4,5 / 4 \varepsilon)$ and
assume $x>X$. For such x we have

$$
\begin{aligned}
|f(x)-L| & =\frac{4}{x^{2}-2} \quad \text { since } x \geq X \geq 4 \Longrightarrow x^{2}-2>0 \\
& <\frac{5}{x^{2}} \quad \text { since } x \geq X \geq 4>\sqrt{10} \\
& <\frac{5}{4 x} \quad \text { since } x \geq X \geq 4 \\
& \leq \frac{5}{4 X} \leq \frac{5}{4(5 / 4 \varepsilon)}=\varepsilon \quad \text { since } x \geq X \geq 5 / 4 \varepsilon
\end{aligned}
$$

End of Note

10. Find the value of

$$
\lim _{x \rightarrow-\infty} \frac{-2-x^{2}}{x^{2}-2}
$$

and show your value satisfies the $\varepsilon-X$ definition.
Solution For large x

$$
\frac{-2-x^{2}}{x^{2}-2} \text { 'looks like' } \frac{-x^{2}}{x^{2}}=-1
$$

so we guess the limit is -1 . Let $\varepsilon>0$ be given, choose $X=-\max (4,5 / 4 \varepsilon)=$ $\min (-4,-5 / 4 \varepsilon)$ and assume $x<X$. For such x we have

$$
\begin{aligned}
|f(x)-L| & =\frac{4}{x^{2}-2} \quad \text { since } x \leq X \leq-4 \Longrightarrow x^{2}-2>0 \\
& <\frac{5}{x^{2}} \quad \text { since } x \leq-4 \Longrightarrow x^{2} \geq 10 \\
& <\frac{5}{4|x|} \text { since } x \leq-4 \Longrightarrow x^{2} \geq 4|x| \\
& \leq \frac{5}{4|X|} \leq \frac{5}{4(5 / 4 \varepsilon)}=\varepsilon \text { since }|x| \geq|X| \geq 5 / 4 \varepsilon
\end{aligned}
$$

Hence we have verified the $\varepsilon-X$ definition of

$$
\lim _{x \rightarrow-\infty} \frac{-2-x^{2}}{x^{2}-2}=-1
$$

Aside I chose 4 in $-\max (4,5 /(4 \varepsilon))$ simply as the smallest integer satisfying $x^{2}>10$. You could choose $\sqrt{10}$ in its place which would lead to the choice of $X=-\max (\sqrt{10}, \sqrt{5} /(\sqrt{2} \varepsilon))$.

